Pusťte na trh neurony

Pusťte na trh neurony
Každý investor neustále hledá, hodnotí a analyzuje různé investiční příležitosti. Důležitou součástí tohoto nikdy nekončícího procesu je bezesporu také sebezdokonalování na základě získaných zkušeností a především neustálá schopnost učit se z vlastních správných či špatných rozhodnutí.

ilustrační obrázek Jelikož člověk je tvor nejen inteligentní, ale i pohodlný, rozhodli se někteří přenechat výše uvedené strojům. Přesněji řečeno počítačům, ještě přesněji takzvané umělé inteligenci – neuronovým sítím. Umělá inteligence je souhrnný pojem pro postupy simulující myšlenkové pochody člověka. Finančnictví je jednou z oblastí, které vyhovují počítačovým řešením s užitím umělé inteligence. Díky přesnosti vstupních dat a přítomnosti nelinearit mezi zkoumanými daty. Úlohy řešené pomocí neuronových sítí mohou být jak klasifikační (ratingy akciových společností), tak i predikční (odhady vývoje kursů, odhad vývoje fundamentálních faktorů).

Mozek jako předloha

Tvůrci neuronových sítí se inspirovali lidským mozkem. Jejich základem jsou neurony, které se navzájem propojí. Všechny tyto neurony jsou následně uspořádány do vrstev. Typická neuronová síť se skládá ze vstupní (horní) vrstvy, skryté a výstupní (dolní) vrstvy. Každý neuron ve skrytých vrstvách je spojen se všemi neurony předchozí vrstvy, takže jeho výstup závisí na všech vstupních hodnotách. Každý vstup je ohodnocen určitou váhou, která určuje jeho důležitost pro daný neuron. Váhy, které při tvorbě sítě náhodně zadáme, samozřejmě nejsou ideální a proto síť musí projít procesem učení, neboli trénování. To probíhá tak, že se zadá určitý vstup (např. zadlužení společnosti, vážený cenový průměr, zisk na akcii, repo sazba atd.) a vypočtený výstup (kurs akcie, dluhopisu) se porovná se správným výsledkem. Pokud se výstup a výsledek liší, tak se automaticky upraví hodnoty vah jednotlivých spojení neuronů. Tato činnost se opakuje tak dlouho, dokud síť nepodává správné výsledky alespoň ve většině případů. Nejvýznamnějším znakem neuronových sítí je tedy schopnost učit se. Tím se sítě liší od tradičních programů, které jen vykonávají pevně dané instrukce. Není tedy nutné precizovat řešení daného problému, stačí shromáždit dostatečně velký reprezentativní soubor příkladů. Neuronová síť je pak schopna z těchto informací vytěžit nejpodstatnější elementy. Síť je také schopna generalizovat a zevšeobecňovat řešení, nachází velmi přesnou odpověď v situacích, se kterými se v procesu trénování nikdy nesetkala, což je v případě akciových odhadů nejdůležitější. Dalším důležitým znakem je skutečnost, že i po částečném poškození je síť schopna nadále generovat dobré výsledky. A o ty nám jde především.

Studie, srovnání a expertízy

Pánové Cheng, McClain a Kelly ve své studii z roku 1997 konstatovali: Počítačový systém pro investování na trhu amerických státních dluhopisů, založený na architektuře umělých neuronových sítí v průběhu pěti let (1989-1993) vytvářel návratnost investic ve výši 17 % oproti 14 %, kterými se chlubil Lehman Brothers Treasury Bond Index. Paradoxem je, že tato studie byla zveřejněna v USA přesně deset let po pádu newyorské burzy, jehož hlavní příčinou bylo právě využití počítačů v obchodních systémech investorů. Také někteří další odborníci upozorňují na fakt, že oproti klasickým statistickým metodám, užívaným při predikcích, dosahují neuronové sítě prokazatelně lepších výsledků. Analytici Dutta a Shekhar publikovali již v roce 1988 srovnávací studii předpovědí pomocí neuronových sítí a regresní analýzy (technická analýza) na trhu dluhopisů. Předpovědi z regresní analýzy byly správné v 65 % případů a předpovědi systému založeném na bázi neuronových sítí byly správné v 88 % případů. Podle R. Shardy, dalšího z analytiků, prokázalo 30 ze 42 provedených studií, že neuronové modely dosahují lepších výsledků, než tradičně využívané techniky. Podobně přesvědčivé výsledky přinesly experimenty s neuronovými sítěmi při investování do amerických a japonských akcií, při investicích do dluhopisů i při předpovědích bankrotů firem (credit risk management).

Analytici na Mars?

Jako nic není černobílé, tak i klady řešení na bázi neuronových sítí mají své zápory. Hlavní nevýhodou využití softwarů umělých neuronových sítí jsou požadavky kladené na systém a uživatele jak v oblasti přípravy vstupních dat, tak i v oblasti trénování neuronové sítě. Problémy vyvstávají také při výběru jednotlivých typů neuronových sítí, v oblasti jejich finanční dostupnosti, matematické složitosti a systémové náročnosti. Všechna tato negativa jsou bariérou vstupu pro drobného investora, nikoliv však pro silné a renomované finanční organizace. Na tomto poli se již delší dobu odehrává „tichá technologická válka“. Výstupy z interních neuronových sítí těchto institucí jsou v první řadě využívány pro jejich vlastní potřeby. Dále jsou stále častěji šikovně maskovány v doporučeních renomovaných analytiků, kteří tyto výstupy mohou nejen lépe utajit, ale i lépe prodat. Přece jen nejsme zatím zvyklý slýchat: "Podle našeho modelu NS-150, verze 2.40 se bude kurs akcie Českého Telecomu pohybovat v průběhu příštího týdne v rozmezí od 297Kč do 312Kč." Rozumný investor či analytik by však měl výstupy z neuronových sítí pouze porovnávat se závěry jiných analytických metod. Není totiž nikdy předem dáno, že výstupy z neuronových sítí musí být nutně lepší, nežli je tomu v případě užití těchto jiných metod.

Pleteme sítě (neuronové)

Již delší dobu plním daty a postupně se snažím trénovat svou malou vrstvenou neuronovou síť. O praktických výsledcích svého trenérského umu, avšak pouze v případě, že výstupy z této neuronové sítě nesplní má zisková očekávání, se velmi rád podělím s čtenáři někdy jindy.

Co si myslíte o umělé inteligenci. Svěřili byste investování neuronům? Podělte se o své zkušenosti a názory s ostatními čtenáři.

Líbil se vám článek?

-19
AnoNe
Vstoupit do diskuze
V diskuzi je celkem 17 komentářů

Prodáváte nemovitost?

Prodáváte nemovitost? Využijte profesionální služby realitních makléřů NEXT REALITY.

Mám zájem prodat:

Prodej bytuByt
Prodej domuDům
Prodej pozemkuPozemek
Ostatní prodej nemovitostiJiné
Zpět

Diskuze

Příspěvek s nejvíce kladnými hlasy

16. 8. 2001 10:00, TGP

Myslím, že podobné systémy jsou hodně nebezpečné - často fungují na základě stejného algoritmu, takže všechny firmy, které by je používaly, by se chovaly víceméně identicky a trh by se dostával do nebezpečné spirály (ať už nahoru nebo dolů). Stroje jsou dobrý sluha, ale zlý pán, jak praví mírně upravené přísloví.

+22
+-
Reagovat na příspěvek

Příspěvek s nejvíce zápornými hlasy

16. 8. 2001 14:33

Móda aplikací umělých neuronových sítí ve finančním prognózování vrcholila v polovině 90. let. Pamatuji se na to dobře, psal jsem tehdy diplomku, která se jimi též částečně zabývala. Pak se ale ukázalo, že žádná umělá neuronová síť nebyla schopna předpovědět a) asijskou krizi v roce 1997, b) ruskou krizi v roce 1998, c) pokles cen ropy a dezinflaci v letech 1998-99, d) internetovou horečku, e) vliv aukcí UMTS na hodnocení telekomů, f) reakci OPECu na c) v letech 2000-2001, g) pokles eura, h) ...

Existují velmi dobré teoretické důvody, proč jsou umělé neuronové sítě nevhodné pro předpovídání finančních časových řad. Naproti tomu mohou být vhodné pro hodnocení kreditní kvality a pro odhalování podvodů s kreditními kartami. (V rámci velkého počtu standardních operací umí umělá neuronová síť docela dobře poznat malý počet nestandardních operací.) Londýnská burza, pokud vím, používá umělé neuronové sítě pro detekci možných "insider" obchodů.

Umělé neuronové sítě tedy nejsou zázračnou cestou ke skvělým výnosům. V tomto směru se přikláním k trénování přirozené neuronové sítě - té, kterou každý z nás nosí v dutině lebeční.

-1
+-
Reagovat na příspěvek
Vstoupit do diskuze
V diskuzi je celkem (17 komentářů) příspěvků.

A tohle už jste četli?

Soud jako byznys. Pojďme vyhrát spor

4. 3. 2021 | Renata Lichtenegerová

Soud jako byznys. Pojďme vyhrát spor

Odměna až z toho, co dokážeme vysoudit. Ve sporech, které za své klienty vede společnost LitFin, se právě teď hraje o víc než miliardu. Eur.

Investice pro začátečníky. Kam s penězi, když už vás štve spoření v bance

3. 3. 2021 | Jiří Hovorka | 26 komentářů

Investice pro začátečníky. Kam s penězi, když už vás štve spoření v bance

Jak zhodnotit úspory, které vám na bankovních vkladech požírá inflace? Zkuste se naučit investovat. Jestli vám to připadá složité, ze začátku to můžete vzít jako hru. Vysvětlíme její... celý článek

Bitcoin za sto tisíc dolarů? Klidně

1. 3. 2021 | Radim Zelený | 13 komentářů

Bitcoin za sto tisíc dolarů? Klidně

Raketový růst ceny bitcoinu přináší pozornost kryptoměnovým a blockchainovým projektům z celého světa. Jedna z tuzemských technologických firem, která se chce prosadit, je Platon Finance... celý článek

Zlaté oči expertů: ceny zlata a jak do něj investovat

26. 2. 2021 | Ondřej Tůma | 8 komentářů

Zlaté oči expertů: ceny zlata a jak do něj investovat

Loni zlato trhlo rekord. Jak to s ním bude letos? Chtěli byste se jím jistit, ale nevíte jak na to? Nechejte si poradit od expertů.

Nevěřte na pohádky o kryptu, říkají zakladatelé finančního webu

26. 2. 2021 | Renata Lichtenegerová | 1 komentář

Nevěřte na pohádky o kryptu, říkají zakladatelé finančního webu

Bitcoin jede jak šinkanzen. Chcete se svézt? Vojtěch Machek a Matěj Bajer ve svém webovém magazínu Finex.cz mapují výhody i nástrahy moderních finančních nástrojů a varují před podvodníky.... celý článek

Hledáte nové bydlení?

Berzrealitky

Vyzkoušejte náš katalog nemovitostí, při jehož tvorbě jsme se spojili s předním českým portálem Bezrealitky.

Partners Financial Services

Používáte nástroj pro blokování reklamy. Pokud nám chcete pomoci, vypněte si blokování reklamy na našem webu. Zde najdete jednoduchý návod. Děkujeme.